A Robust Learning Methodology for Uncertainty-Aware Scientific Machine Learning Models
نویسندگان
چکیده
Robust learning is an important issue in Scientific Machine Learning (SciML). There are several works the literature addressing this topic. However, there increasing demand for methods that can simultaneously consider all different uncertainty components involved SciML model identification. Hence, work proposes a comprehensive methodology evaluation of also considers possible sources uncertainties identification process. The considered proposed method absence theory, causal models, sensitivity to data corruption or imperfection, and computational effort. Therefore, it provide overall strategy uncertainty-aware models field. validated through case study developing soft sensor polymerization reactor. first step build nonlinear parameter probability distribution (PDF) by Bayesian inference. second obtain machine Monte Carlo simulations. In step, PDF with 30,000 samples built. evaluated sampling 10,000 values simulation. results demonstrate identified sensors robust uncertainties, corroborating consistency approach.
منابع مشابه
Machine Learning Models for Housing Prices Forecasting using Registration Data
This article has been compiled to identify the best model of housing price forecasting using machine learning methods with maximum accuracy and minimum error. Five important machine learning algorithms are used to predict housing prices, including Nearest Neighbor Regression Algorithm (KNNR), Support Vector Regression Algorithm (SVR), Random Forest Regression Algorithm (RFR), Extreme Gradient B...
متن کاملRobust Optimization using Machine Learning for Uncertainty Sets
Our goal is to build robust optimization problems for making decisions based on complex data from the past. In robust optimization (RO) generally, the goal is to create a policy for decision-making that is robust to our uncertainty about the future. In particular, we want our policy to best handle the the worst possible situation that could arise, out of an uncertainty set of possible situation...
متن کاملUncertainty-Aware Reinforcement Learning for Collision Avoidance
Reinforcement learning can enable complex, adaptive behavior to be learned automatically for autonomous robotic platforms. However, practical deployment of reinforcement learning methods must contend with the fact that the training process itself can be unsafe for the robot. In this paper, we consider the specific case of a mobile robot learning to navigate an a priori unknown environment while...
متن کاملDust source mapping using satellite imagery and machine learning models
Predicting dust sources area and determining the affecting factors is necessary in order to prioritize management and practice deal with desertification due to wind erosion in arid areas. Therefore, this study aimed to evaluate the application of three machine learning models (including generalized linear model, artificial neural network, random forest) to predict the vulnerability of dust cent...
متن کاملA Hybrid Machine Learning Method for Intrusion Detection
Data security is an important area of concern for every computer system owner. An intrusion detection system is a device or software application that monitors a network or systems for malicious activity or policy violations. Already various techniques of artificial intelligence have been used for intrusion detection. The main challenge in this area is the running speed of the available implemen...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics
سال: 2022
ISSN: ['2227-7390']
DOI: https://doi.org/10.3390/math11010074